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1. Introduction 

Living cells can be observed as complex dynamical systems that are constantly remodelling 
themselves as response to changes in their environment (Zak et al., 2005). The cell 
metabolism includes number of reactions and products of reactions which interact forming a 
metabolic network. The aim of modern biology is to understand the structure and dynamic 
of those complex interactions.  

Due to the fact that large amount of date about processes in living cells are being collected 
every day, it become necessary to use computers for data processing and analysis. 
Introducing computer technologies into biology new discipline has been develop, systems 
biology or computational biology. The aim of system biology is describing and 
understanding how parts of organism interact in one complex system; systems biology 
aims to develop mathematical model of biological systems by integrating experimental 
and theoretical techniques (Hecker et al., 2009, Albert, 2004). Systems biology studies 
biological systems by systematically perturbating them (biologically, genetically or 
chemically) monitoring the genes, proteins and informational pathway response (Strizh et 
al., 2007). According to Bruggeman & Westerholl, 2007 a complete systems biology 
approach requires (i) characterisation of organism molecular composition, (ii) components 
dynamics (spatial and temporal) and (iii) detail analysis of molecular response to internal 
and external stimuli. 

Progress in molecular biology led to development of complete maps of genomes of many 
organisms; it is also possible to identify and classify proteins. Although the number of 
completely sequenced genomes is mounting rapidly, our knowledge of transcription 
regulation is limited to a few model organisms (Janga & Collado-Vides, 2007). The 
interactive regulation of genes, working together to create gene networks has been 
considered the origin of many functions of organism (Mochizuki, 2008). Classical molecular 
method (Northern blotting, reporter genes and DNA footprinting) have provided great 
insight into regulatory relationship between genes; advancement in genetic experimental 
technologies DNA microarray analysis provide an effective and efficient way to measure the 
gene expression levels of up to tens of thousands of genes simultaneously under many 
different conditions (Xu et al., 2007). The control of the gene transcription is an integrated 
mechanism involving the interaction of genes and proteins (Knott et al., 2010). Every gene 
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has one or more activators and one or more inhibitors that are regulating the specific gene 
expression, depending on the situation in the cell and cell environment. The complex 
network of genes and there activators and/or inhibitors is defined as gene regulatory 
network. Gene regulatory networks can be very usefully for understanding the organisation 
within cells, because in gene regulatory networks information form the cell state and the 
outside environment are translated into correctly timed gene expression (Crombach & 
Hogeweg, 2008). Gene regulatory networks are usually described as network models where 
the dependencies between genes are presented by direct graph, in which nodes represent 
genes, proteins, enzymes or other chemical substances and edges led form a regulator to its 
target (edges represent transformation, eg. phosphorylation and dephosphorylation, or 
activation and deactivation)(Wilczynski & Furlog, 2010; Dilão & Muraro, 2010). Ideally, gene 
regulatory network display flow of information throughout embryogenesis (Hunman et al., 
2009). To easily analyse those complex systems, mathematical models of gene regulatory 
networks have been developed. Mathematical models of gene regulatory networks include 
set of differential equations, graphical networks, stochastic functions and simulation 
models. Models can be used for making novel predictions and to plan future experiments.  

In this chapter the theory of gene regulatory networks will be presented. The chapter will 
start with ideas how gene regulatory networks are constructed. There will be data on 
different types of gene regulatory networks and approaches for modeling those systems. 
This chapter will try to explain why is the modeling of complex regulatory networks 
important for genetic engineering and how can the mathematical analysis of gene regulatory 
networks be used for  genetic engineering experiments planning and results interpretation. 

2. Genes and genome  

The hereditary nature of every living organism is defined by genome. Genome is formed of 
long sequences of DNA that provide information necessary to construct organism (Lewin, 
2004). So genome can be divided into series of DNA sequences called genes. Each gene 
represents single protein (there is relationship between the base sequences of a gene and the 
amino acid sequence of the polypeptide whose synthesis directs the gene) (Berg, 2001). 
Genome of living organism can contain from less than 500 genes (for mycoplasma) to more 
than 40 000 genes (for human genome) (Table 1).  

 

Phylum Species Genome (bp) 
Algae Pyrenomas salina 6.6 · 105 

Mycoplasma M. pneumoniae 1.0 · 106 
Bacterium E. coli 4.2 · 106 

Yeast S. cerevisiae 1.3 · 107 
Slime mold D. discoideum 5.4 · 107 
Nematode C. elegans 8.0 · 107 

Insect D. melanogaster 1.4 · 108 
Bird G. domesticus 1.2 · 109 

Amphibian X. laevis 3.1 · 109 
Mammal H. sapiens 3.3 · 109 

Table 1. The genome size of some organisms (Lewin, 2004) 
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The number of genes in genome can be identified in several ways: (i) by defining open 
reading frames, (ii) by identifying all the mRNAs (transcriptome) or (iii) by identifying all 
the proteins (proteome). Due to the fact that some of the genes are presented in more then 
one copy or are related to one another, the number of different types of genes is less than 
total number of genes. 

Over the past decade genome sequencing has generated large amount of new information. 
The main goal in sequencing is the identification of molecular and cellular function of all 
gene products. Interpretation of raw DNA sequences data includes identification and 
annotation of genes, proteins and metabolic and regulatory pathways (Médigue & Moszer, 
2007). Accurate annotation of the human and genome of other organisms is essential for 
drug discovery (Rust et al., 2002). The mostly used annotation method is sequence 
homology recognition. According to Yakunin et al., 2004 apart sequence-based method, few 
others approaches can be used: (i) analysis of temporal, spatial and physiological proteins 
regulation, (ii) analysis of protein interactions, (iii) analysis of gene neighborhood, (iv) 
analysis of gene knockout phenotype, (v) analysis of the protein activities, (vi) analysis of 
post-translational modifications and (vii) protein structural analysis.  

More information about components interaction allows multidimensional annotation; one 
dimensional annotation includes identification of genes in genome and description of 
functionality; two dimensional annotation specifies the cellular components and their 
interactions; three dimensional annotation of genome includes description of intracellular 
arrangement of chromosome and other cellular components, while four dimensional 
genome annotation could include changes in genome sequences due to the evolution (Reed 
et al., 2006). Genome annotation is usually preformed using one of the bioinformatics tools, 
GLIMMER, GlimmerM and GENSCAN (those programs include gene finding algorithm) or 
BLAST, FASTA and HAMER (sequence-homology search tools) (Reed et al., 2006). 

2.1 Gene regulation 

Taking in account central dogma of molecular biology developed by Francis Crick (transfer 
of sequence information between different biopolymers: RNA, DNA and proteins) there are 
three possible places of regulation of production of an active gene; first is the transcriptional 
regulation, second the translation regulation and the third post-translation or post-
transcriptional regulation (Fig.1.). Regulation of gene expression is fundamental for the 
coordinate synthesis, assembly and localization of the macromolecular structures of cells 
(Halbeisen et al., 2007). 

Regulation of gene expression at transcriptional level is evolutionary conserved mechanism 
in all cellular organisms. This process is mediated by physical interactions between 
transcription factors and cis-acting regulatory elements in promoter region of target genes 
(Janky et al., 2009). During transcription, mRNA is synthesized using mRNA polymerase. 
This process can be divided in four steps: (i) promoter recognition, (ii) chain initiation, (iii) 
mRNA chain elongation and (iii) chain termination and regulation can occur at each step. 

Protein synthesis occurs during the translation process; mRNA is “translated” into specific 
polypeptide according to rules of tri nucleotide genetic code. This step of protein biosynthesis 
can also be divided into three parts: (i) initiation, (ii) elongation and (iii) termination. Each  
of these phases requires a specific group of translocation factors (Day & Tuite, 1998).  
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Fig. 1. Gene expression (http://csls-text.c.u-tokyo.ac.jp/active/04_03.html) 

Translation initiation includes events that lead to positioning of 80S ribosome at the start 
codon of mRNA. Translation rates are primarily regulated at initiation level involving large 
number of initiation factors (Macdonald, 2001). The amount of mRNA available for 
translation can be changed at different steps of RNA maturation. Two families of proteins 
(the RNA binding proteins and RNA helicases) determinate the fate of pre-mRNAs and 
mRNA by regulating steps from transcription to translation (Mazzucotell et al., 2008). 
Translation control is critical in regulating wide range of process in cells form development, 
cell differentiation and proliferation to regulation of metabolic pathways. It is also important 
for protection of cell from external effects (Garcia-Sanz et al., 1998). 

Transcription and translation regulation mechanisms are till now described in literature 
quite detail, but there is still only few data of post-transcriptional and post-translational 
regulation mechanism. Due to the fact that large number of RNA molecules is being 
synthesis in the cell, the precise post-transcriptional regulation is necessary to control the 
activity and location of produced RNA molecules. This mechanism is controlled by RNA-
binging proteins (Halbeisen et al., 2007). Post-transcriptional regulations of gene expression 
occur at the levels of pre-messenger RNA (mRNA) processing (capping, splicing, and 
polyadenylation), mRNA stability, and mRNA translation (Floris et al., 2009). The last level 
of gene expression control is the post-translational regulation. This step is responsible for 
controlling the levels of protein activity. Post-translation protein modifications are 
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important for clinical research. There are few hounded of described post-translation 
modification; the most common are phosphorylation, ubiquitination, glycosylation, S-
nitrosylation, proteolysis and methylation (Egorina et al., 2008).  

3. Gene regulatory networks  

When talking about biochemical network they can be divided into three groups: (i) 
metabolic network-describing chemical transformations between metabolites, (ii) protein 
networks (signaling networks)-describing protein-protein interaction and (iii) gene 
networks- describing relationships between genes (Brazhnik et al., 2002, Schlitt & Brazma, 
2005). Key differences between regulatory and metabolic networks are listed in the Table 2. 

 
Network feature Metabolic networks Regulatory networks 

Structure Hazard stochiometry Qualitative statements 

Evolutionary conservation 
Enzyme sequences highly 
conserved across species 

Limited conversion of cis 
regulatory sites between 
closely related species 

Malleability 
Fixed structure in terms of the 
substrates that a particular 
enzymes can process 

Adjustable structure, 
because of the possibility 
that mutations 
in the cis regulatory sites 
change binding specificity 

Level of biochemical 
characterization 

Fairly complete understanding 
of most subsystems in 
microbial organisms 

Most subnetworks have not 
been well characterized 
even in microbial model 
organisms 

Modelling approaches 
Quantitative constraint-based 
models can be constructed at 
the genome-scale 

Quantitative models can be 
currently constructed only 
on a small scale; qualitative 
discrete network models 
can be used to study large 
networks 

Role of noise 

Relatively small because of the 
high concentrations of 
metabolites involved in most 
reactions 

Possibly significant in 
determining both structural 
features of the network and 
the overall response of the 
network to a stimulus 

Table 2. Differences between regulatory and metabolic networks (Herrgård et al., 2004) 

Gene regulatory networks regulate the expression of thousands of genes. It can be sad that 
gene regulatory networks are maps of the interactions between regulatory gene products 
and their cis regulatory elements (gene and gene products interact and form networks), as 
well between signaling ligand and their receptor. So, basic functional unit of gene regulatory 
network is promoter region of a gene or operon which contains cis  regulatory binding site 
for transcription factors, The location of binding sites and affinity of transcription factors 
determinate the level of gene expression (Herrgård et al., 2004) (Fig. 2). 
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Gene regulatory maps display flow of regulatory information throughout embryogenesis 
(Hinman et al., 2009). Gene network analysis provides many important information: 

1. gene network provides information to help annotate genome 
2. it helps to uncover the biochemical network in a cell 
3. it provides new idea to treat some diseases (Liu et al., 2006). 

 
Fig. 2. Genomic view of gene regulatory network. From genomic perspective transcriptional 
regulation can be presented as an interplay between cis-regulatory elements and different 
transcription factors (Janga & Collado-Vides, 2007) 

The activity of functional genes is influenced by few factors: transcriptional factors and 
cofactor that effects transcription, by degradation of proteins and transcripts and by post-
translational modifications (Hecker et al., 2009). The idea of gene regulatory network is to 
describe dependence between molecules included in gene activity. Gene regulatory network 
is composed of nodes (representing genes proteins or metabolites) and edges (representing 
molecular interactions) (Hecker et al., 2009). Identification of gene regulatory networks is 
based on deterministic models of gene expression (Cinquemani et al., 2008). 

The architecture of gene regulatory networks arise directly form DNA sequences of the 
genome and representation of gene regulatory networks must have specific emphasis on 
predicted DNA inputs and it has to be viewable at a number of different levels (Longabaugh 
et al., 2008). Identifying gene networks from large-scale dataset measurements is a difficult 
computational and experimental problem (Tegnér &  Björkegren, 2006). 

www.intechopen.com



 
Mathematical Modelling of Gene Regulatory Networks  

 

119 

4. Mathematical modelling of gene regulatory network  

As mentioned before, gene regulatory networks are becoming more and more usefully tool 
for analysis and understanding organization within cells and their dynamics (Crombach & 
Hogeweg, 2008). To better understand the complex process in gene regulatory networks, 
mathematical models of those systems have been developed. Mathematical models are very 
useful for predicting the effect of nonlinear interactions (Smolen et al., 2000) and can 
provide insight into systems understanding of regulation of processes in the cell (Zak et al., 
2005). Gene regulatory networks are modelled as networks composed of nodes representing 
genes, proteins or metabolites and edges representing molecular interactions (protein-
protein, DNA-protein or relationships between genes) (Hecker et al., 2009). The biggest 
problem in a field of mathematical modelling of gene regulatory networks is still in 
development of model based on experimental data because it is very difficult to defining the 
quality of available experimental data. There are many approaches for defining gene 
regulatory networks identification; in the most general manner we can defer unstructured 
and structured approach (Zak et al., 2005). In unstructured modelling approach there is 
assumption that every gene regulates every other gene. Using additional domain 
knowledge it is possible to develop structured model. Subcellular structure, nuclear 
connectivity and dynamical model structure have to be taken into consideration when 
developing structured model (Fig 3). 

 
Fig. 3. (a) Unstructured and (b) structured gene regulatory network modelling  
(Zak et al., 2005) 
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Mathematical sciences can contribute to biology in field of models diversity. Different types 
of cell are developed as a consequence of the gene activity which is under control of gene 
regulatory network (Fig. 4) (Mochizuki, 2008).  

 
Fig. 4. Example of gene regulatory network (Mochizuki, 2008) 

When developing model two facts have too be taken into account: (i) gene expression levels 
are regulated by the combined action of multiple gene products, (ii) the number of 
measurements is relatively small compared to the number of measured genes and measures 
noise has to be taken into account (van Someren et al., 2002). According to Schlitt & Brazma, 
2005 gene networks models can be divided into four groups according to increasing level of 
detail in the models: (i) part lists, (ii) topology models, (iii) control logic models, (iv) 
dynamic models.  

All mentioned approaches face the same two problems which make the automatic discovery 
of gene networks form experimental data far form trivial (van Someren et al., 2002). The first 
is statistical robustness and the second biological interpretation of the results (how to differ 
regulation form co-expression and indirect regulation form direct regulation) (Lulli & 
Romauch, 2009). When talking about statistical robustness the focus is the fact that high-
dimensionality problem cusses the hypothetical models to be highly susceptible (number of 
microarray experiments is usually much smaller that number of genes included into 
network) (Chan et al., 2008).  

4.1 Parts list 

The first step in developing gene regulatory network is construction of a part list of the 
components included into network (Hu et al., 2010). High-throughput genome sequencing 
project have made available complete genomic lists of many organism (Alm & Arkin, 2003). 
Those lists include genes, transcriptional factors, promoters, binding sites and many other 
molecules important for functioning of gene network (Schlitt & Brazma, 2007).  

4.2 Topology models 

After defining the components of the gene networks, the next step of the modelling of the 
gene regulatory network is definition of the connections between nodes (definition of the 
edges). Development of network topology includes decision about genes are included into 
the networks, which acts as inhibitors or activator of transcription (Mendes et al., 2003). The 
different topology classes of networks (regular lattice, small-world, random networks…) are 
consequence of different ways how large sets of elements are connected (Gonçalves & Costa, 
2008). Network growth model is present in Fig. 5. To quantitatively describe a network 
topology at minimum three metrics are employed: 
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1. clustering coefficients - for node i in a network with ki edges connecting it to the nearest 
neighbours, the clustering coefficient is defined with Eq. 1. 

  1

2
 

ii

i
kk

n
C   (1) 

were n  represents the number of edges between nearest neighbours. Ci can have 
numerical values between 0 and 1. When Ci=0 node is linked to disconnected group, 
and when Ci=1 node is connected to interlinked group. 

2. network diameter – is defined as the smallest number of the links by which starting 
from one  node another node can be reached 

3. degree distribution – is probability P(k) that a node has k links (Lukashin et al., 2003).  

 
Fig. 5. Network growth model (Lukashin et al., 2003) 

Ciliberti et al., 2007 analysed relationship between robustness and network topology for 
millions of networks with different topologies. Results showed that significantly different 
network architecture can show the same gene expression patterns. It was also noticed that 
some networks are highly robust to gene expression noise and mutations whereas some are 
quite fragile. Crombach & Hogeweg, 2008 analysed the evolution of gene regulatory 
networks. Their results showed that interplay between long term evolution process and 
short term gene regulation dynamics leads to increase in efficiency of crating adapted 
offspring.  
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4.3 Control logic models 

After defining the network topology, the next step in development of gene regulatory 
network is analysis of the rules of the interaction between the network elements (Schlitt and 
Brazma, 2007). Transcriptional-regulatory systems is based on the presence of transcription 
factor binding sites of genes which are responsible for receiving temporal regulatory input 
signals; sequential logic model (SML) can be used for description of trans-activation and 
temporal mRNA expression profiles (Yeo et al., 2007). SML technique can ensure detail 
insight into gene regulation and it can ensure systematically analysis of the dynamic 
transcriptional inputs.  

4.4 Dynamic models 

The nodes in gene network population of genes, proteins and other regulatory molecules. 
There can be from few to few thousands of copies of those molecules in cell. Components of 
the gene regulatory networks can be changed in response to internal and external stimuli. It 
is important to include those interactions into network; this is possible using dynamic 
modelling approach. Dynamic modelling frameworks are usually classified along two axes: 
continuous versus discrete (describes the level of detail of node state) and deterministic 
versus stochastic (in view of uncertainties and variability of the transfer functions) (Albert, 
2007). Dynamic models can also be divided into quantitative (base on system of ordinary 
differential equations) and qualitative models (piecewise linear differential system) 
(Chaouiya, 2007). 

4.4.1 Boolean models 

Boolean networks describe the state of genes with binary (ON/OFF) variables. Dynamic 
behaviour of each variable is governed by Boolean function (Albert, 2004). Although 
Boolean networks allow the analysis of the dynamics of the gene regulatory networks, they 
ignore the effect of genes at intermediate levels (Xu et al., 2007). Boolean networks have 
been intensely investigated as models for genetic control in cells. In those networks, each 
gene represents the node, and as mentioned before each node has two states ON (producing 
the protein) or OFF (there is no protein production). The biological basis for development of 
Boolean netwok as a model of gene regulatory network lies in the fact that during regulation 
of functional states the cell exhibits switch-like behaviour; this form of behaviour ensures 
the movement of cell from one state to another (Shmulevich et al., 2002). In the network 
there are links between nods (one node has impact on the other) (Pomerance et al., 2009). 
The Boolean networks have ability to contain very large number of nodes but are very crude 
in their approximation in biology (Karlsson & Hörnquist, 2007). In Boolean network form 
(Fig.6.), the genome is presented by set of binary variables, g1,g2….gN. The expression of each 
gene changes with time according to Eq.2.: 

       1 2
( 1) , ....

kn
n n n n ng t F g t g t g t   (2) 

where Fn is Boolean function constructed according to the inhibition or activation nature of 
the regulators. According to Balleza et al, 2008 if F(g1,g2) is the function of two regulators g1 
and g2 than function F can be in one of the following forms: F(1,1)=1, F(1,0)=1, F(0,1)=0 and 
F(0,0)=1. Regulatory phrase for F=1 is activator and for F=0 inhibitor.  
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Fig. 6. Boolean network of three entities (Steggles et al., 2007) 

Continuous models give more realistic description of the process, but development of those 
models requires large amounts of experimental data. As mentioned before in Boolean 
models at each time point the gene state depends on the state of the gene regulators at 
previous time step (Giacomantonio & Goodhill, 2010).  

Some modification of traditional Boolean gene regulatory network models can be found in 
literature. One of them is temporal Boolean network. The difference between those two 
network models is in the fact temporal Boolean network allows the state of gene at time t+1 
depends on state of genes at times t, t-1,….., t-(T-1)(Silvescu & Honavar, 2001). Another 
approach is propped by Shulevich et al, 2002; probabilistic Boolean network. Probabilistic 
Boolean network includes properties of Boolean networks (rule-based dependence between 
genes), but due to the probabilistic nature this approach is suitable for systematic study of 
regulatory networks. 

4.4.2 Petri net models 

Petri net theory provides graphical notation with mathematical background. A Petri net is 
directed, bipartite and labelled graph which is build  of four parts: (i) palces, denoted with 
circle representing biological compounds (metabolites), (ii) transitions, denoted with black 
rectangle, representing biochemical reactions between metabolites (iii) arcs, denoted with 
arrows and (iv) tokens denoted by black rectangle (Fig.7.) (Steggles et al., 2007).  

As mentioned before, places represent resource of the system and can contain movable 
objects (tokens). Tokens represent quantitative unit of compounds. Transitions correspond 
to events that can change the state of the resources. Arcs (arcs label corresponds to 
stoichiometric number in reaction equation). Places represent resource of the system, and 
transitions correspond to events that can change the state of the resources. Arcs connect 
places to transitions (Chaouiya, 2007) and are allowed only between places and transitions 
and vice versa, never between places or between transitions (Koch et al., 2005). 

According to Steggles et al., 2006, it is possible to develop gene regulatory network model 
based on Petri net starting from Boolean network. The idea was to use logic minimization to 
extract Boolean terms representing gene network and then to translate this into Petri net 
structure; the resulting Petri net model is capable to correctly capture dynamic behaviour of 
gene networks.  
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Fig. 7. Petri net modelling of different reactions (Chaouiya, 2007) 

4.4.3 Difference and differential equation models 

Using ordinary differential equations for representing gene regulatory networks 
concentrations of proteins, mRNAs and other molecules are presented as continuous time 
variables (Polynikis et al., 2009). Flexibility of ordinary deferential equations allows the 
description of complex relations between components of the net. Differential equations can 
describe complex dynamic behaviour like oscillations, cyclical patterns, multistationary and 
switch-like behaviour (Gebert et al., 2007). According to Hecker et al., 2009 the dynamic of 
gene regulatory networks can be described with (Eq.3.): 

 
d

( , , , )
d

x
f x p u t

t
  (3) 

were 1( ) ( ( )...... ( ))nx t x t x t represents gene expression vector of genes for 1 to n, f  is function 

that describes the rate of change of variable x. p presents model  parameter set and u  
external perturbation signals. Transcription and translation can be model using ordinary 
differential equations (Eq. 4-5):  

       i
1 2

d
, ....

d
R R R

i i i n i i

r
F f p f p f p r

t
   (4) 
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( )

d
P

i i i i

p
f r p

t
   (5)  

the function ( )R
i jf p is usually non-linear and describes the dependence of mRNA 

concentration on protein concentration. According to Hecker et al., 2009 ordinary 
differential equations for description of gene regulatory network can be divided into:  

1. linear differential equations can used for description of  gene expression kinetics (Eq.6)  

 
,

1

d
d

N
i

i j j i
j

x
w x b u

t 
   (6) 

Gebert et al., 2007 used developed model of pecewise linear differential equation for 
description of interaction between genes in regulatory networks; variables of the model 
were mRNA concentrations (Fig.8.).  

 
Fig. 8. Model of gene regulation (Gebert et al., 2007) 

Model was based on assumption that regulation between genes can be described using 
piecewise linear differential equations (Eq 7-9). 

    .
1 1,1 1 1,1 1,1 1,3 3 1,3 1,3 1 1, , , ,x k h x m k h x m x       (7) 

  .
2 2,1 1 2,1 2,1 2 2, ,x k h x m x    (8) 

    .
3 3,1,2 1 3,1 3,1 2 3,2 3,2 3 3, , , ,x k h x m h x m x      (9) 

were  represents the degradation rate of mRNA and k  are rate constants. 
Wu et al., 2004 proposed method to model gene expression dynamic from measured 
time-course data including linear equations. Developed dynamic equations described 
the relationships between internal state variables and observation variables.  

2. non-linear differential equations are used for describing complex dynamic behaviours. 
Comparing to linear models, identification of the non-linear differential equation model 
is computationally more intensive and it requires more data (Quian & Wang, 2007). The 
numerical representation of non-linear ODE model of  gene regulatory network (Eq.10): 

  1 2
d

, ,..., 1,2,...
d

i
i n i

x
f x x x i N

t
    (10) 

where fi represents the non-linear function which can be determinated from 
experimental data, it can be polynomial (Eq.11):  
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    1 2
1

, ,..., 1,2,...
iL

i ij ij ij n
j

f w x x x i N

       (11) 

where Li is the number of terms in fi, wij represent parameters that need to be estimated 
and Ωij(x1, x2,…xN) is the component of the nonlinear function. 
Quian and Wang, 2007 developed gene regulatory network model including 
evolutionary algorithm and filtering approach; noise was modelled using nonlinear 
ordinary differential equations. Simulation showed the usage of proposed model on 
experimental data for microarray experiments.  

Using set of ordinary differential equations for description of gene network, the inference of 
genetic networks is often defined as a function optimization problem to minimize the 
defences between gene expression levels obtained numerically and levels measured in 
experiments (Kimura et al., 2009). The problems that occurs when working with differential 
equation model are that those models include many parameters which have to be estimated 
form experimental data or obtained from literature. It also has to be taken into consideration 
that for complex differential equations analytical solution and analysis of the equations can 
be very complex. 

4.4.4 Stochastic modelling  

All cellular events depend on probabilistic collisions between molecules. Due to the fact 
that number of events occurring in the cells is not large and events are dependent, it is not 
possible to use deterministic rate equations for description of the gene network (gene 
expression is stochastic process (Paulsson, 2005). There are many important stochastic 
phenomena during the life time of the cell, like random fluctuations that initiate 
transcription, spontaneous jumps in mRNA or protein concentrations (Rosenfeld, 2007). 
Study of stochastic properties in genetic systems involves formulation of molecular noise, 
formulation of approximation of these representations and development of computational 
algorithms capable for describing complexity of network dynamics (El Samad, et al., 
2005).  

According to Rosenfeld, 2007 for mathematical description of stochastic dynamics of gene 
regulatory networks two approaches can be used:  

1. non-linear dynamics paradigm – treats the biochemical components included in gene 
expression regulation as continuous variables and describes their variations using non-
linear differential equations 

2. Markov process paradigm – due to the fact that some molecules included into gene 
expression regulation can occur in cell in very low concentrations they can not be 
treated as a continuous variables and their random fluctuations can be very high. 

Stochastic modelling approach is mathematically represented with Eq.12: 

    
1 1

, , 1
m m

j j
j j

p x t t p x t t t t 
 

                (12) 
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where x represents the amount of molecules (state variable), p(x,t) probability distribution. 
Assuming that t→0, the equation for stochastic representation of gene regulatory network 
is developed  Eq. 13: 

 
    




 m

j

jj txp
t

txp

1

,
,   (13) 

4.4.5 Finite state linear models 

Methodology of finite state linear modelling (FSLM) was developed by Bramza & Schlitt, 
2003; it combines discrete and continuous aspects of gene regulation in structured way. 
Model was developed on few assumptions: (i) gene activity is defined by state of 
transcription   binding sites in promoter region, (ii) each binding site can be in one of the 
finite number of states, (iii) active gene produces substance with rate dependant on activity 
level, (iv) state of binding site depends on concentrations of transcription factors. The 
continuous parts of the model consist of the state of the proton concentrations. As 
mentioned before it also includes Boolean-type model gene regulation (each gene and each 
binding site can have only two sates; ON or OFF). Bramza & Schitt, 2003 used finite state 
linear model for construction of biological network of ǌ-phage (Fig.9.) 

 
Fig. 9. Gene network of  ǌ-phage (Bramza & Schitt, 2003 ) 
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Ruklisa et al., 2005 used previously described FSLM model for testing some theoretical 
properties of the model: (i) what kind of network dynamic could be modelled using this 
framework, (ii) is it possible to describe chaotic network dynamics and some others. A series 
of experiments were performed to estimate the regularity of behaviour of random networks; 
networks were simulated in 10000 steps and results show that FSLM models can be suitable 
for describing biological reality. 

4.4.6 Hybrid models 

Due to fact that boundaries between discreet and continuous model depend on the level of 
details included into the model there is an attempt to develop the models that could include 
both approaches (Schlitt & Bramza, 2007). Matsuno & Doi, 2000 proposed hybrid Petri net 
model for presentation of gene regulatory networks of ǌ-phage. Hybrid Petri net is an 
extension of Petri net that has continues and discrete elements and can be easily used for 
protein or mRNA concentration. Another approach to development of hybrid model is 
present by Crudu et al., 2009. They proposed unified framework for hybrid simplification of 
the Markov models of stochastic gene network dynamics. It was shown that those simplified 
models describe with good accuracy the stochastic properties of the gene networks and can 
be used for multi-scale biochemical systems. 

5. Conclusion 

Gene expression can be regulated on few levels. Gene regulatory networks are defined as 
collections of DNA segments in cells which interact with each other. Construction of gene 
regulatory networks is first step in biological analysis. It is very import to understand and 
explain the dynamic of gene regulatory networks. To explain and understand those complex 
biochemical systems different mathematical models have been developed. Techniques of 
mathematical modelling defer in level of details. Each modelling technique has its 
advantages and disadvantages and that has to be taken into consideration when developing 
mathematical model, because proposed model has to provide good insight into gene 
regulation process and be useful for prediction of some possible mutations or any other 
change.  

6. Future direction section 

When modelling gene regulatory networks the fact that model describes only some 
properties has to be taken into consideration. So there is always open question how real the 
developed model can be (Schlitt & Bramza, 2007). Using new molecular methods large 
amount of data can be collected ensuring the better insight into process in the cell. Including 
all this information in the model more detail model can be developed. When talking about 
mathematical modelling of gene regulatory networks the neural networks have been used 
lately for modelling (Lee  & Yang, 2008; Xu et al., 2008). For example Knott et al., 2010 
presented approach to model gene regulatory networks as non-liner system using artificial 
neural network. There is also idea in developing synthetic networks. All described 
approaches have one goal developing simple model which would describe the process in 
the cell; so the future direction of modelling of gene regulatory networks would be in 
funding the way how to reduce the complexly of biological systems and to preserve the 
model functionality.  
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