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Abstract
Our aim in this paper is to investigate how variability and uncertainty in
advance demand information (ADI) affects the performance of a make-to-stock
supplier. To this end, we develop a model of a supplier who receives orders
for one item at a time from customers that may belong to one of two
classes. Each customer in the first class requests immediate delivery, and
hence provides no ADI at all. Each customer in the second class makes a
cancelable reservation in advance of his requested due date, and hence
provides uncertain ADI. We assume that the supplier uses an order base
stock replenishment policy with a release lead time. According to this
policy, each customer order triggers the potential placement of a
replenishment order by the supplier at a time that is determined by
offsetting the demand due date by a fixed planned supply lead time. The
replenishment order is actually placed only if there have been fewer
cancellations that replenishment orders in the past; otherwise, it is
skipped. We investigate via simulation the impact of important ADI related
parameters on the optimal decision variables and performance of the
replenishment policy, for four different variations of the model. In each
variation, the replenishment (or supply) process is represented by a
different queueing system. The systems that we consider are the M/M/1,
M/D/1, M/M/∞, and M/D/∞ queues, respectively.
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Introduction

Production and operations management researchers and practitioners agree
that obtaining and distributing demand information to all the partners of a
supply chain is essential for improving the coordination and ultimately the
performance of the supply chain. The benefits of sharing demand information
are further amplified when this information is obtained ahead of time. From
a supplier’s side, one of the main advantages of having access to advance
demand information (ADI) is that such information can be used as a tradeoff
for finished goods (FG) inventory and can thus lead to reduced inventory
costs.

One way that a supplier can obtain ADI is by inciting his customers to
place their orders ahead of time. This can be accomplished by offering
incentives such as price discounts or service priority to customers who
order in advance. In many real situations, however, not all customers who
are given the opportunity to order in advance will do so, and of those who
will, some may subsequently change or cancel their orders; therefore, in
practice, ADI is usually both variable and uncertain. Yet, with a few



Liberopoulos-Koukoumialos, 95-114

MIBES Transactions, Vol 2, Issue 1, Autumn 2008 96

exceptions, most of the literature on ADI concerns models in which ADI is
assumed to be known with certainty (and in many cases to be even constant),
perhaps because the literature on ADI is still in its early stages and such
models are naturally the first to be developed and analyzed. Some of that
literature is reviewed in the next section. Consequently, the self-evident
managerial interest in assessing the impact of variability and uncertainty
in the amount of ADI has not been satisfactorily addressed in the
literature.

The nature of the beneficial tradeoff between FG inventory and ADI, even
when ADI is constant, is in general very difficult to assess analytically,
particularly when the supplier is a capacitated production/inventory
system, because production capacity affects this tradeoff in a non-trivial
way. When ADI is variable and uncertain, the difficulty in obtaining
analytical results seems insurmountable. Given the managerial interest in
assessing the impact of variability and uncertainty in the amount of ADI on
the supplier’s performance, but also the intricacy in carrying out this
assessment analytically, in this paper we investigate this impact via
simulation. Our hope is that the results of our investigation may shed some
light into the nature of the tradeoff between FG inventory and ADI, and may
provide some supporting evidence and intuition to more courageous
researchers who set off to find analytical answers.

To carry out our investigation, first we develop a model of a make-to-stock
supplier who has access to variable and uncertain ADI. The supplier
receives orders for one item at a time from customers that may belong to
one of two classes. Each customer in the first class requests immediate
delivery (rush job), and hence provides no ADI at all. Each customer in the
second class makes a cancelable reservation a fixed demand lead time in
advance of his requested due date, and hence provides uncertain ADI. Once
he makes a reservation, he must subsequently confirm or cancel it a fixed
confirmation lead time before this due date.

We assume that the supplier uses a modified order base stock replenishment
policy with a release lead time. According to this policy, each customer
order triggers the decision by the supplier to place or not a replenishment
order. The time of this decision is determined by offsetting the demand due
date by a fixed planned supply lead time. When this decision time comes,
the supplier decides to place the order only if there have been fewer
cancellations than replenishment orders in the past; otherwise, he skips
the order. The parameters of the modified policy are the order base stock
level and the planned supply lead time.

To investigate the impact of variability and uncertainty of ADI on the
performance of the supplier, we study the impact of the ADI related
parameters on the optimal decision variables and performance of the
modified order base stock policy with a release lead time, for four
variations of our model. In each variation, the replenishment (supply)
process is represented by a different queueing system. The four systems
that we consider are the M/M/1, M/D/1, M/M/∞, and M/D/∞ queueing systems,
respectively. The first two systems are single-server queues and hence
represent capacitated suppliers, whereas the latter two systems are
infinite-server queues and hence represent uncapacitated suppliers.

In our investigation we seek to address the following questions for we
which we have no a priori intuition.

The first set of questions is related to the impact of the demand lead time
(denoted by T) of class-2 customers on the optimal decision variables and
performance of the supplier’s replenishment policy. One of these variables
is the order base stock level. The order base stock level can be viewed as
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being made up of two components. The first component is aimed at ensuring
adequate service to class-1 customers (rush jobs), while the second
component is aimed at ensuring adequate service to class-2 customers.
Intuition and previous analysis for the case where the supplier has
constant, reliable ADI, i.e., only class-2 customers (e.g., see
Liberopoulos (2008) and reference therein), suggest that as T increases,
the optimal order base stock level should decrease until it reaches a
certain minimum level at certain critical value of T. If this turns out to
be true in the more complex model examined in this paper, where there are
two classes of customers, then what is this minimum order base stock level
equal to, and what is the corresponding critical value of T? What happens
if T is larger than the critical value? Does the component of the optimal
order base stock level aimed at servicing class-1 customers decrease also,
given that the rush orders from class-1 customers can be satisfied by FG
inventory replenishments triggered by class-2 customer orders? How does the
optimal planned supply lead time vary with T?

Another set of questions is related to the impact of the rush job
probability (denoted by p), the cancellation probability (denoted by q),
and the confirmation lead time (denoted by ) on the optimal parameters and
performance of the modified order base stock policy with a release lead
time.

Intuition suggests that as p decreases, i.e., as there are fewer rush jobs,
the amount of ADI increases, and therefore the supplier’s optimal order
base stock level and cost should decrease. At the same time, as p
decreases, the overall percentage of cancelled reservations, (1 – p)q,
increases. As a result, the number of superfluous replenishment orders,
i.e., orders that are triggered by eventually cancelled reservations, also
increases, raising FG inventory along the way. Intuition suggests that this
increase in FG inventory should cause a further decrease in the supplier’s
optimal order base stock level and resulting cost. To summarize, as p
decreases, intuitively the supplier’s optimal order base stock level and
cost tends to also decrease. Does the optimal planned supply lead time also
decrease with p?

What is the impact of q and  on the optimal decision variables and
performance of the modified order base stock policy with a release lead
time? Is it as simple to guess as the impact of p? Intuition suggests that
as q decreases, i.e., as there are fewer cancellations, or  increases,
i.e., the confirmation lead time becomes longer, the uncertainty of ADI
decreases, and therefore the supplier’s optimal order base stock level and
cost should decrease. At the same time, as q decreases or  increases, the
supplier places fewer superfluous replenishment orders, causing a reduction
in FG inventory. Intuition suggests that this reduction in FG inventory
should cause an increase in the supplier’s optimal order base stock level
to keep the customer service from dropping. To summarize, as q decreases or
 increases, intuitively the supplier’s optimal order base stock level and
cost tend to both decrease and increase. Which of the two effects
predominates?

Finally, how does capacity interfere with variability and uncertainty in
ADI, and does a capacitated supplier, whose replenishment orders are
typically pipelined, behave differently than an uncapacitated supplier,
whose replenishment orders do not necessarily arrive in the order in which
they were placed?

The rest of this paper is organized as follows. In the following section,
we review some of the literature on ADI, particularly that which is most
closely related to our work. Next, we describe our model, and then we
investigate via simulation the impact of important ADI related parameters
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on the optimal replenishment policy decision variables and performance of
our model, for the cases where the supply process is modeled as an M/M/1,
M/D/1, M/M/∞, and M/D/∞ queue, respectively. Initially, we look at the
simpler case where there are no cancellations, and then we examine the more
complicated general case with cancellations. We conclude at the last
section.

Literature review

The literature on ADI is growing fast. Most of it concerns pure inventory
systems, i.e., systems with no production capacity and hence queueing
effects. One of the earliest and most influential works for systems with
exogenous replenishment times is the work of Hariharan and Zipkin (1995).
They study a model of a supplier who uses a continuous-review order-base-
stock replenishment policy to meet customer orders that arrive according to
a Poisson process. Each customer order is for a single item to be delivered
a fixed demand lead-time following the order. They consider three cases for
modeling the demand and replenishment (i.e., supply) lead-times. In each
case, they construct an equivalent conventional model, i.e., one with no
demand lead-times, in which the replenishment lead-times are offset by the
demand lead-times. This shows that the effect of a demand lead-time on
overall system performance is the same as a corresponding reduction in the
replenishment lead-time.

Gallego and Özer (2001) consider a single-stage periodic-review inventory
system with exogenous replenishments and variable but finite demand lead-
times. They show that for the zero set-up cost case, an order-base-stock
policy is optimal if the replenishment time is greater than the maximum
demand lead-time. Gallego and Özer (2003) and Özer (2003) extend this
analysis to multi-echelon and distribution systems, respectively, and Wang
and Toktay (2006) extend it to systems with flexible delivery. Finally,
Özer and Wei (2004) prove the optimality of a state-dependent modified
order-base-stock policy for an extension of the single-stage system in
which the capacity is limited.

Other works that show the benefits of ADI on systems with exogenous
replenishment times are Bourland et al. (1996), Güllü (1997), Decroix and
Mookerjee (1997), Chen (2001), van Donselaar et al. (2001), Lu et al.
(2003), Marklund (2006), and Tan et al. (2007).

For queue-type capacitated production/inventory systems, Buzacott and
Shanthikumar (1993, 1994) present a detailed model of a single-stage make-
to-stock manufacturer who uses a continuous-review order-base-stock
replenishment policy to meet customer demands that arrive a fixed demand
lead-time in advance of their due-dates. They analyze in detail the case
where demands arrive according to a Poisson process and the manufacturing
system consists of a single server with exponentially distributed
processing time and FCFS service protocol; hence, the flow through the
manufacturing system is identical to that through an M/M/1 queue. For this
system, they show that the optimal demand lead-time and associated cost is
a linearly decreasing function of the order-base-stock level.

For the discrete-time version of the M/M/1 make-to-stock manufacturing
system analyzed in Buzacott and Shanthikumar (1993, 1994), Karaesmen et al.
(2002) evaluate analytically the performance of the optimal order-base-
stock policy. They then compare it to the performance of the overall
optimal replenishment policy, which they evaluate numerically using dynamic
programming. Their numerical results show that the optimal order-base-stock
policy is quite effective.
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Karaesmen et al. (2003) complement the work of Buzacott and Shanthikumar
(1993, 1994) with some results on the influence of production lead-time
variability on the tradeoff between the order-base-stock level and the
demand lead-time. Along the way, they propose an approximation scheme for a
generalization of the model studied by Buzacott and Shanthikumar (1993,
1994) in which the flow through the manufacturing system is identical to
that through an M/G/1 queue.

Karaesmen at al. (2004) assess the value of ADI for the model considered by
Buzacott and Shanthikumar (1993, 1994) by assuming that the manufacturer
pays a fixed or a demand lead-time-dependent price for obtaining ADI. They
then evaluate the effects of processing capacity on the value of ADI. They
repeat this assessment for a variation of the model in which customers
accept deliveries earlier than their required due-dates. For this
variation, they show that the effect of a demand lead-time on overall
system performance is the same as a reduction in the backorder cost in an
equivalent conventional system, i.e., one with no demand lead-times.

Liberopoulos et al. (2003) propose an order-base-stock-type policy for a
model of a make-to-stock supplier with two classes of customers: those who
provide unreliable ADI in the form of cancelable reservations, and those
who provide no ADI at all. They optimize this policy via simulation.

Gayon et al. (2006) and Benjaafar et al. (2006) use Markov decision process
analysis to characterize the structure of the optimal policy of a single-
stage capacitated supply system with imperfect ADI, where customers either
make cancelable reservations, as in the system introduced by Liberopoulos
et al. (2003), or provide changeable due-dates, respectively.

Liberopoulos et al. (2005) investigate via simulation the tradeoff between
the optimal order-base-stock levels and kanbans (WIP-control limits) and
the demand lead-time, in order-base-stock policies with/without WIP-limits,
for a single- and a two-stage make-to-stock capacitated manufacturing
system with ADI.

Wijngaard (2004) considers a single-stage make-to-stock manufacturing
system that either produces at a constant production rate R or not all. The
goal is to meet customer orders with minimum average inventory and stockout
costs; both cases of lost sales and order backlogging are considered.
Customer orders arrive according to a Poisson process a fixed demand lead-
time h in advance of their due-dates. The flow through the manufacturing
system is therefore equivalent to that through an M/D/1 queue, except that
production is continuous. The main result is that for high utilization rate
 and small demand lead-times the finished-goods inventory reduction due to
the foreknowledge of ADI is equal to (1 – ) h R.

Wijngaard and Karaesmen (2007) show that for the make-to-stock M/D/1-type
queue considered in Wijngaard (2004), if the demand lead time is smaller
than a certain threshold value, then an order base stock policy is optimal.
For unit production rate, this threshold value is equal to the optimal base
stock level for the case without ADI.

Finally, Liberopoulos (2008) develops some analytical results on the
tradeoff between FG inventory and ADI for a model of a single-stage, make-
to-stock supplier who uses an order base stock replenishment policy to meet
customer orders that arrive a fixed time in advance of their due dates.

Model description

We consider a model of a make-to-stock supplier who has access to variable
and uncertain ADI. The supplier receives orders for one item at a time from
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customers that arrive randomly according to a stationary Poisson process
with mean arrival rate . Each arriving customer may belong to one of two
classes, 1 and 2. Each customer in class 1 requests immediate delivery
(rush job), i.e., his requested due date coincides with the arrival time of
his order. Each customer in class 2 makes a cancelable reservation a fixed
time, T, before his requested due date. We refer to T as the demand lead
time. For both classes, if no items are available at the requested due
date, the demand is backordered. If we let R denote the demand lead time of
any customer, then


= 



0, for class-1 customers,

, for class-2 customers.
R

T
(1)

Each arriving customer belongs to class 1 or 2 with a fixed probability p
and 1 – p, respectively. We refer to p as the rush job probability.

Once a class-2 customer makes a reservation, he must subsequently confirm
or cancel this reservation a fixed time, , prior to his requested due
date. We refer to  as the confirmation lead time. Note that if  > T,
offsetting the demand due date by  would yield a time instant that
preceded the customer order arrival time. In this case, the customer would
have to confirm or cancel his order before he even places it. Since this is
impossible, we assume that in this case, the customer must confirm or
cancel his reservation immediately upon arrival. Therefore, the time
instant at which a class-2 customer confirms or cancels his reservation is

(T – )+ (2)
time units after his arrival, where x+ ≡ max(0, x). If a class-2 customer
confirms his reservation, the remaining time until he claims his item at
his requested due date is

T – (T – )+ = min(T, ). (3)
Each class-2 customer cancels or confirms his reservation with a fixed
probability q and 1 – q, respectively. We refer to q as the cancellation
probability.

Given that customers arrive according to a Poisson process with mean
arrival rate and that all class-1 customers and a fraction (1 – q) of
class-2 customers consume FG items, the total demand for the consumption of
items from FG inventory is Poisson with rate

e = [p + (1 – p)(1 – q)]. (4)

The reservation-confirmation mechanism described above can also be viewed
as a surrogate for a forecasting system in which there are some confirmed
orders in the short term and forecasts of orders in the longer term. The
parameters that affect the variability and uncertainty of ADI are , T, p,
q, and .

There is no setup cost or setup time for placing a replenishment order and
no limit on the number of orders that can be placed per unit time. The
supplier uses a type of an order base stock replenishment policy which we
call modified order base stock policy with a release lead time. To describe
how this policy works, we must first explain how the conventional order
base stock policy with a release lead time works. The conventional order
base stock policy with a release lead time, which was first proposed by
Karaesmen et al. (2002), works like the classical base stock policy, except
that each replenishment order is triggered by a customer order instead of
an actual demand, and the time of placing this order is offset from the due
date by a fixed time L, just like in the time phasing step of the MPR
procedure. We refer to L as the planned supply lead time. Moreover, the
supplier starts with an initial level of items in FG inventory, S, as in
the classical base stock policy. We refer to S as the order base stock
level. The advantage of the conventional order base stock policy with a
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release lead time is that it requires minimal information and is very
simple to implement. Moreover, under some conditions, it has been shown to
be effective or even optimal.

In the modified order base stock replenishment policy with a release lead
time that we propose in this paper, each customer order does not
necessarily trigger the placement of a new replenishment order by the
supplier. If it did, then in the long run more replenishment orders than
actual customer demands would be placed – since some customer reservations
are cancelled – leading to the accumulation of infinite FG inventory. The
decision to place or not a replenishment order is offset from the due date
by the planned supply lead time, L. We refer to this decision as place-or-
skip decision, for short. Once again, note that if the demand lead time T
is smaller than L, then offsetting the demand due date by L would yield a
time instant that preceded the customer order arrival time, which means
that the supplier would have to make his place-or-skip decision before the
customer order even arrives. Since this is unreasonable, we assume that in
this case the supplier makes his place-or-skip decision immediately upon
the arrival of the customer order. Therefore, the time instant of the
supplier’s place-or-skip decision is

+
+


− =  −

0, for class-1 customers,
( )

( ), for class-2 customers,
R L

T L (5)

time units after the arrival of a customer order.

The outcome of the supplier’s place-or-skip decision is determined as
follows. At the time instant of the place-or-skip decision, the supplier
compares the cumulative number of cancelled reservations against the
cumulative number of replenishment orders that have been placed up to that
instant. If there have been more cancelled reservations than replenishment
orders, then the supplier simply skips placing a new replenishment order.
If there have been fewer cancelled reservations than replenishment orders,
then the supplier places a new replenishment order immediately.

To keep track of the surplus of the cumulative number of canceled
reservations over the cumulative number of replenishment order placements,
the supplier uses a stack which we call cancelled reservations surplus
stack (CRSS), whose level increases/decreases as follows. Whenever a
customer cancels his reservation, the CRSS level is increased by one.
Whenever the CRSS is not empty at a place-or-skip decision instant, the
supplier skips a replenishment order and the CRSS level is decreased by
one; otherwise he places an order and leaves the CRSS level unchanged.

If the supplier’s decision is to place an order, he does so immediately and
receives one item after W time units. We refer to W as the actual
replenishment (or supply or flow) time. W is a random variable that depends
on the supply process.

A schematic representation of the model that we described above is shown in
Figure 1, where big circles represent delays, small circles represent
probabilistic routing, and squares represent decision points. To better
understand how the modified order base stock policy with a release lead
time works, a typical sequence of events is shown in Figure 2, for the case
where L <  < T.

The policy that we described above is reasonable, because it guarantees
that in the long run, the supplier places as many replenishment orders as
there are confirmed demands. Moreover, we think that it should also be
quite effective, because in his place-or-skip decision, the supplier uses
the most recent information on cancelled reservations. An alternative,
simpler policy would be, for example, for the supplier to simply decide to
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place or skip a replenishment order with stationary probability 1 – q and
q, respectively. Such a policy would also guarantee that in the long run
the supplier places as many replenishment orders as there are confirmed
demands; however, it would probably be less effective than the modified
order base stock replenishment policy we described in the previous
paragraphs, because it uses no feed-back information on cancelled
reservations.

Items to
customers

Delay before making a
place-or-skip decision

(R – L)+

Replenishment
Time
W

Delay before
confirming a
reservation
(T – )+

Delay before
demanding an item

min(T, )

p

1 – p

q

1 – q

FG
inventory

Backordered
demands

Cancelled
reservations.
Increase CRSS by one.

Confirmed
reservations

Rush
jobs

If CRSS is empty, place
replenishment order
immediately.

Customer
orders

Reservations

If CRSS is not empty, do
not place replenishment
order. Decrease CRSS by
one.

CRSS

e

Figure 1: Model of a single-stage, make-to-stock supplier with variable,
unreliable ADI, operating under a modified order base stock replenishment
policy with a release lead time

− At t1, a class-1 customer order arrives. The class-1 customer
immediately demands an item, and the supplier decides to place or
skip a replenishment order based on the current CRSS level. If his
decision is to place the order, then he places it immediately.

− At t2, a class-2 customer order arrives.
− At t3, the class-2 customer confirms or cancels his order. If he

cancels his order, the CRSS level is increased by one.
− At t4, the supplier decides to place or skip a replenishment order

based on the current CRSS level. If his decision is to place the
order, then he places it immediately.

− At t5, the class-2 customer demands an item.

t1 t2 t5t3 t4

L

T

time

Figure 2: Typical sequence of events for the case where L <  < T.

The model that we described above is quite versatile. The decision
variables of the modified order base stock policy with a release lead time
are the order base stock level S and the planned supply lead time L.
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Parameters , T, p, q, and  characterize the variability and uncertainty
of ADI and are considered as exogenous. Setting these parameters to their
extreme values yields several characteristic special cases of the model.
Below, we list some of these cases.

T = 0: In this case, there is no ADI and the supplier has a single class of
customers, namely, rush jobs. Customer orders, i.e., demands, arrive
according to a Poisson process with rate e, given by (4). Parameters L and
 are irrelevant. The supplier uses a classical base stock policy, namely,
he places a replenishment order immediately upon the arrival of a customer
demand.

 = 0: In this case, every class-2 customer confirms or cancels his
reservation T time units after he places it, i.e., right on his requested
due date.

 > : In this case, every class-2 customer confirms or cancels his
reservation immediately upon arrival. This model is equivalent to a model
in which there are no cancellations and the supplier has two classes of
customers, namely, rush jobs and customers who place orders T time units in
advance of their requested due dates. In the equivalent model, class-1
customers arrive according to a Poisson process with rate p, and class-2
customers arrive according to a Poisson process with rate (1 – p)(1 – q).
The supplier always places – i.e., never skips – a replenishment order
immediately upon the arrival of a customer order.

p = 0: In this case, the supplier has a single class of customers, namely,
customers who make cancelable reservations T time units in advance of their
requested due dates. Customer orders, i.e., reservations, arrive according
to a Poisson process with rate , and the consumption of items from FG
inventory occurs according to Poisson process with rate (1  – q). Here,
there are two subcases to consider. The first is the subcase where  > L or
L >  > T. In this case, the resulting model is equivalent to a model in
which customers arrive according to a Poisson process with rate (1 – p),
there are no cancellations, each customer places a firm order min(T, L)
time units in advance of his requested due date, and each customer order
immediately triggers the placement of a new replenishment order. The second
subcase is one in which  < L and  < . In this case, the resulting model
is equivalent to a model in which customer reservations arrive according to
a Poisson process with rate , each customer must confirm/cancel his
reservation min(T, L) –  time units after he places it. If a customer
confirms his reservation, the remaining time until he claims his item at
his requested due date is .

p = 1: In this case, the supplier has a single class of customers, namely,
rush jobs, so there is no ADI. Customer orders, i.e., demands, arrive
according to a Poisson process with rate . Parameters T, L, , and q are
irrelevant. The supplier uses a classical base stock policy, namely, he
always places a replenishment order immediately upon the arrival of a
customer demand. This case is identical to the case where T = 0, except
that the customer demand arrival rate is  instead of e.

q = 0: In this case, there are no cancellations. The supplier has two
classes of customers, namely, rush jobs and customers who place orders T
time units in advance of their requested due dates. Class-1 customers
arrive according to a Poisson process with rate p, and class-2 customers
arrive according to a Poisson process with rate (1 – p). Parameter  is
irrelevant. The supplier always places – i.e., never skips – a
replenishment order (R – L)+ time units after the arrival of a customer
order. This case is similar to the equivalent model in the case where  >
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T, except that in that model, the supplier always places a replenishment
order immediately upon the arrival of a customer order.

q = 1: In this case, all reservations are cancelled. This model is
equivalent to a model in which the supplier has a single class of
customers, namely, rush jobs, so there is no ADI. Customer orders, i.e.,
demands, arrive according to a Poisson process with rate p. Parameters T,
L, and , are irrelevant. The supplier uses a classical base stock policy,
namely, he always places a replenishment order immediately upon the arrival
of a customer demand. This case is identical to the case where T = 0,
except that the customer demand arrival rate is p instead of e.

p = q = 0: In this case, there are no cancellations, and the supplier has a
single class of customers, namely, customers who place their orders T time
units in advance of their requested due dates. Customer orders arrive
according to a Poisson processes with rate . This case represents the
situation where the supplier has access to constant, reliable ADI (see
Liberopoulos, 2007).

Effect of variability and uncertainty in ADI on the supplier’s performance

We consider a standard optimization problem whose objective is to find the
values of S and L that minimize the long-run expected average cost of
holding and backordering FG inventory, for given ADI related parameters ,
T, p, q, and , and inventory holding and backordering cost rates, h and b,
respectively. Our goal is to investigate the impact of the ADI related
parameters on the supplier’s optimal decision variables and performance. We
carry out our investigation for four variations of the model that we
developed in Section 0, where in each variation the supply process is
represented by a different queueing system. The four systems that we
consider are the M/M/1, M/D/1, M/M/∞, and M/D/∞ queues, respectively. The
cost rates h and b are the same in all the variations and are set equal to
1 and 9, respectively. For each variation, we consider two different values
for the customer arrival rate, namely = 0.8 and = 0.95. For each
queueing system variation and for each value of , the service rate of the
queueing system, denoted by , is set so that E[W] = 5 in order to have a
common basis when comparing the results between different systems. Note
that for the M/M/1 and M/D/1 queues, E[W] is equal to 1/ (1 – ) and 1/  +
2/2(1 – ) , respectively (e.g., see Gross and Harris, 1998), whereas for
the M/M/∞ and M/D/∞ queues, E[W] is simply equal to 1/ .

To carry out our investigation, we proceed step by step. Initially, we look
at the simpler case where there is no order canceling; hence ADI is
variable but reliable. Then, we look at the more complicated general case
where ADI is both variable and unreliable.

Effect of variability
First, we investigate the case where q = 0. As we mentioned in the previous
section, when q = 0, there are no cancellations; hence ADI is variable but
reliable. Parameter  is irrelevant and the supplier always places a
replenishment order (R – L)+ time units after the arrival of a customer
order. A schematic representation of the resulting model is shown in Figure
3.

Let L* denote the optimal planned supply lead time. Let S*(T) and C*(T)
denote the optimal order base stock level and the corresponding minimum
long-run expected average cost, when the planned supply lead time is L* and
the demand lead time is T. As was mentioned in the previous section, when T
= 0, the model reduces to a classical base stock model without ADI, for
which analytical results exist. If T > 0, on the other hand, there exist no
exact analytical expressions for the optimal decision variables and
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performance, except for the case where p = 0 (see Liberopoulos (2008)).
Using the analytical expressions for p = 0, we can compute S*(0), C*(0), L*,
S*(L*), and C*(L*), for each queueing system and for each value of ; note
that S*(L*) and C*(L*) are the optimal order base stock level and the
corresponding minimum long-run expected average cost, when the planned
supply lead time is L* and the demand lead time T is equal to L*. The
results are shown in Table 1.

Items to
customers

Delay before placing a
replenishment order

(R – L)+

Replenishment Time
W

Delay before demanding an item
T

p

1 – p

FG inventory

Backordered
demandsOrders with ADI

Rush
jobs

Customer
orders

e

Figure 3: Model of a single-stage, make-to-stock supplier with variable but
reliable ADI, operating under a modified order base stock replenishment
policy with a release lead time

Table 1: Optimal replenishment policy decision variables and corresponding
minimum long-run expected average cost for the case where p = q = 0

Case 1:  = 0.8 Case 2:  = 0.95Supply
process  L* S*(0) C*(0) S*(L*) C*(L*)  L* S*(0) C*(0) S*(L*) C*(L*)

/1 1 11.5129 10 10.319 0 9.210 1.15 11.5129 12 12.052 0 10.937
M/D/1 0.9123 9.4796 9 8.997 0 7.675 0.943 10.7035 11 10.700 0 8.785
M/M/∞ 0.2 5 7 3.848 2 2.964 0.2 5 8 4.169 2 3.284
M/D/∞ 0.2 5 7 3.848 0  0 0.2 5 8 4.169 0  0

Let L* denote the optimal planned supply lead time. Let S*(T) and C*(T)
denote the optimal order base stock level and the corresponding minimum
long-run expected average cost, when the planned supply lead time is L* and
the demand lead time is T. As was mentioned in the previous section, when T
= 0, the model reduces to a classical base stock model without ADI, for
which analytical results exist. If T > 0, on the other hand, there exist no
exact analytical expressions for the optimal decision variables and
performance, except for the case where p = 0 (see Liberopoulos 2007). Using
the analytical expressions for p = 0, we can compute S*(0), C*(0), L*,
S*(L*), and C*(L*), for each queueing system and for each value of ; note
that S*(L*) and C*(L*) are the optimal order base stock level and the
corresponding minimum long-run expected average cost, when the planned
supply lead time is L* and the demand lead time T is equal to L*. The
results are shown in Table 1.

To investigate the impact of the ADI related parameters on the optimal
decision parameters and performance, we optimized L and S(T) for different
values of parameters T and p, for each queueing system variation and for
each value of . Tables 2-5 show the resulting values of L*, S*(L*), and
C*(L*), for different values of p. In these tables, we purposely omitted
displaying S*(T) and C*(T) for different values of T, except for T = L*, for
space considerations; however, the behavior of S*(T) and C*(T) vs. T is
discussed in observations 2 and 3 that follow. The values in the first row
of each table correspond to the instance where p = q = 0 and are therefore
identical to those in Table 1. The results in all other rows were found
after running a large number of simulations at different L and S values and



Liberopoulos-Koukoumialos, 95-114

MIBES Transactions, Vol 2, Issue 1, Autumn 2008 106

choosing the best combination of values. The values of the minimum cost
C*(L*) are therefore estimates produced by the simulations. The simulation
run length was set to 60, 20, 10 and 10 million customer arrivals, for the
M/M/1, M/D/1, M/M/∞ and M/D/∞ queueing systems, respectively. These run
lengths guaranteed that in each instance examined, the upper and lower
limits of the 95% confidence interval for the average FG inventory are
within 0.3% from its estimate, and the upper and lower limits of the 95%
confidence interval for the average number of backordered demands are
within 3% from its estimate. Finally, we should note that the optimization
was performed over integer values of L only, even though in reality L is a
continuous parameter.

Table 2: Optimal replenishment policy decision variables and corresponding
minimum long-run expected average cost for the M/M/1 queueing system

Case 1:  = 1, e = 0.8 Case 2: = 1.15, e = 0.95
p L* S*(L*) C*(L*) L* S*(L*) C*(L*)
0 11.5129 0 9.210 11.5129 0 10.937
0.2 14 0 9.222 13 0 10.428
0.5 23 0 9.390 22 0 10.523
0.7 38 0 9.669 36 0 10.800

Table 3: Optimal replenishment policy decision variables and corresponding
minimum long-run expected average cost for the M/D/1 queueing system

Case 1:  = 0.9123, e = 0.8 Case 2:  = 0.9430, e = 0.95
P L* S*(L*) C*(L*) L* S*(L*) C*(L*)
0 9.4796 0 7.675 10.7035 0 8.785
0.2 12 0 7.866 12 0 9.328
0.5 20 0 7.874 20 0 8.937
0.7 34 0 8.073 34 0 9.775

Table 4: Optimal replenishment policy decision variables and corresponding
minimum long-run expected average cost for the M/M/∞ queueing system

Case 1:  = 0.2, e = 0.8 Case 2:  = 0.2, e = 0.95
p L* S*(L*) C*(L*) L* S*(L*) C*(L*)
0 5  2 2.964 5  2 3.284
0.2 5  3 3.161 5  3 3.508
0.5 5  4 3.489 5  5 3.720
0.7 5  5 3.617 5  6 3.909

Table 5: Optimal replenishment policy decision variables and corresponding
minimum long-run expected average cost for the M/D/∞ queueing system

Case 1:  = 0.2, e = 0.8 Case 2:  = 0.2, e = 0.95
p L* S*(L*) C*(L*) L* S*(L*) C*(L*)
0 5  0 0 5  0 0
0.2 5  2 1.779 5  2 1.955
0.5 5  4 2.750 5  4 3.030
0.7 5  5 3.207 5  6 3.510

From the results in Tables 1-5 we can make the following observations.

1 From Table 1, we can see that S*(0) and C*(0) are lower in the
uncapacitated M/M/∞ and M/D/∞ queues than in the respective capacitated
M/M/1 and M/D/1 queues, because the variability of the replenishment time
is smaller in the uncapacitated queues than in the respective capacitated
queues. Moreover, among the capacitated queues, the M/D/1 queue has lower
values of S*(0) and C*(0) than the M/M/1 queue. Again, this is because
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the variability of the replenishment time is smaller in the former than
in the latter queue. For the uncapacitated queues, S*(0) and C*(0) are
the same, because S*(0) and C*(0) depends only on the mean and not the
variance of the replenishment time, as is well-known from Palm’s Theorem
in Queueing Theory (e.g., see Gross and Harris, 1998).

2 In all instances of the capacitated M/M/1 and M/D/1 queues, the optimal
order base stock level, S*(T), exhibits the behavior shown in Figure 4
(a). Namely, as T increases, S*(T) decreases until it reaches zero at T =
L*. For T L*, S*(T) remains at zero. This behavior implies that there is
a tradeoff between T and S*(T). Moreover, this tradeoff appears to be
“exhaustive” in the sense that S*(T) drops all the way to zero when T
L*. The fact that the tradeoff between T and S*(T) is exhaustive is
proved in Liberopoulos (2007) for the case where p = q = 0, which as was
noted earlier represents the situation where the supplier has only one
class of customers that provide constant, reliable ADI. Karaesmen et al.
(2002), Wijngaard (2004) and Karaesmen and Wijngaard (2007) also show
that, for the case with one class of customers, all advance orders may be
aggregated in determining whether to order as long as the demand lead
time is shorter than the cover time for the optimal base stock level for
the case without ADI. The simulation results presented here suggest that
the tradeoff between T and S*(T) appears to be exhaustive also in the
case where ADI is variable and reliable.

Figure 4 (a) also shows the delay of placing a replenishment order
following the arrival of a class-2 customer order, (T – L*)+, vs. T. By
looking at both graphs of Figure 4 (a), namely, S*(T) vs. T and (T – L*)+

vs. T, we can conjecture that for the capacitated queues, when T < L*,
S*(T) is positive and the delay in placing a replenishment order is zero,
whereas when T L*, S*(T) is zero and the delay in placing a
replenishment order is positive and equal to T – L*. In other words, when
T < L*, it is optimal for the supplier to keep some FG inventory to
ensure good customer service and at the same time place a replenishment
order immediately upon the arrival of a class-2 customer order. When T
L*, on the other hand, it is optimal for the supplier not to keep any FG
inventory and at the same delay placing a replenishment order when a
class-2 customer order arrives.

3 In all the instances of the uncapacitated M/M/∞ and M/D/∞ queues, the
optimal planned supply lead time is equal to the mean replenishment time,
i.e., L* = E[W] = 5. Moreover, the optimal order base stock level, S*(T),
exhibits the behavior shown in Figure 4(b). This behavior is similar to
that shown for the capacitated queues in Figure (a), except that the
S*(T) does not drop all the way to zero at T = L*, but at a minimum
positive level, S*(L*). The only exception is the case of the M/D/∞ queue
when p = 0, where S*(L*) = 0, just like in the capacitated queues. For T

L*, S*(T) remains at S*(L*). This behavior implies that in the
uncapacitated queues (except in the case of the M/D/∞ queue when p = 0),
the tradeoff between T and S*(T) is not exhaustive.

Figure 4 (b) also shows the delay, (T – L*)+, in placing a replenishment
order, following the arrival of a class-2 customer order, vs. T. By
looking at both graphs of Figure 4(b), namely, S*(T) vs. T and (T – L*)+

vs. T, we can conjecture that for the uncapacitated queues, S*(T) is
always positive (except in the case of the M/D/∞ queue when p = 0). The
delay in placing a replenishment order, on the other hand, is zero, when
T < L*, and positive when T L*. This suggests that, if T L*, it is
optimal for the supplier to keep some FG inventory and the same time
delay the placement of a replenishment order when a class-2 customer
order arrives; hence he is not making use of all the demand lead time T
to further reduce the optimal order base stock level. This observation is
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in line with the result in the seminal work by Hariharan and Zipkin
(1995) that ADI beyond the supply lead time is useless in the case of
infinite capacity.

L*

S*(T)

T

S*(0)

M/M/1, M/D/1, and M/D/∞
(when p = 0)

Delay (T – L*)+

L*

S*(T)

T

S*(0)

Delay (T – L*)+

M/M/∞ and M/D/∞
(except when p = 0)

(a) (b)

S*(L*)

Figure 4. Qualitative behavior of S*(T) and the delay (T – L)+ vs. T for the
capacitated and uncapacitated queues, respectively.

4 To see why when p = 0, S*(L*) = 0 for the M/D/∞ queue, and S*(L*) > 0 for
the M/M/∞ queue, recall from the discussion at the end of Section 0, that
if p = 0, the supplier has a single class of customers, namely, customers
who make reservations T time units in advance of their requested due
dates. If T = L, then the supplier places his replenishment order
(assuming the CRSS is empty) immediately upon the arrival of a customer
demand. Now, if the supply process is modeled as an M/D/∞ queue, the time
of this replenishment order, W, is deterministic and equal to its mean,
E[W]. In this case, it is clear that if L  =  E[W], then the supplier
always receives the replenishment order exactly E[W] time units after the
demand that triggered it, i.e., right on-time to fill this demand. For
this reason, he does not need to hold any FG inventory in advance, hence
S*(E[W]) = 0. In fact, this is the best the supplier can do; therefore L*

= E[W]. If the supply process is modeled as an M/M/∞ queue, on the other
hand, then the replenishment time, W, is random and may be larger or
smaller than its mean, E[W]. In this case, it is clear that if L = E[W],
the supplier does not always receive the replenishment order on time to
fill the demand that triggered it. For this reason, he needs to build
some FG inventory in advance; hence, S*(E[W]) > 0.

5 To see why when p > 0, S*(L*) > 0 for the M/D/∞ queue, note that if p > 0
and the supply process is modeled as an M/D/∞ queue, the time of the
replenishment order, W, is still deterministic and equal to its mean,
E[W]; therefore, the supplier always receives the replenishment order
exactly E[W] time units after the demand that triggered it, as in the
case when p = 0. This is right on-time to fill this demand, if the
customer that placed the order is a class-2 customer; however, it is late
if the order was placed by a class-1 customer. For this reason, the
supplier needs to build some FG inventory in advance to service class-1
customers; hence S*(E[W]) > 0.

6 L* and C*(L*) are lower in the uncapacitated M/M/∞ and M/D/∞ queues than
in the respective M/M/1 and M/D/1 queues. This is because the variability
of the replenishment time is smaller in the uncapacitated queues than in
the respective capacitated queues, as was noted in observation 1.
Moreover, among the capacitated queues, the M/D/1 queue has lower values
of L* and C*(L*) than the M/M/1 queue. Again, this is because the
variability of the replenishment time is smaller in the former queue than
it is in the latter, as was also noted in observation 1. For both the
uncapacitated M/M/∞ and M/D/∞ queues, on the other hand, L* is the same
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(see also observation 3 above), whereas C*(L*) is lower in the M/D/∞
queue than in the M/M/∞ queue (except when p = q = 0, where they are
equal to each other).

7 Let L*(p), denote the optimal planned supply lead time as a function of
p, and let S*(T; p), and C*(T; p) denote the optimal order base stock
level and the corresponding minimum long-run expected average cost, when
the planned supply lead time is L*(p), and T = L*(p). In all instances,
we found that L*(p) and S*(T; p) exhibit the behavior shown in Figure 5
(a), for the capacitated queues, and Figure 4 (b), for the uncapacitated
queues. Namely, for the capacitated queues, L*(p) is increasing in p.
Moreover, it appears to approximately satisfy

L*(p) = L*(0)/(1 – p),
where L*(0) is the optimal planned supply lead time when p = 0. For the
uncapacitated queues, L*(p) appears to be independent of p and, as was
already noted in observation 3, appears to be equal to E[W].
For all queues, S*(T; p) and C*(T; p) are increasing in p. This can be
explained by the fact that as the rush job percentage p increases, the
amount of ADI decreases (since fewer customers provide ADI).
Consequently, the need to keep safety stock and the costs associated with
this need increase. When p = 1, there is no ADI at all. More
specifically, S*(T; p) appears to approximately satisfy

= + −

= + −

* * *

* *

( ; ) (0;0) (1 ) ( ;0)

(0;1) (1 ) ( ;0).

S T p pS p S T

pS p S T
In other words, S*(T; p) appears to be approximately equal to the
weighted average of the optimal order base stock level of the two classes
of customers in isolation.

L*(0) L*(p1) L*(p2)

S*(T;0)

S*(T;1)

S*(T;p1)

S*(T;p)

T

S*(0;0)

L*(0) = L*(p1) = L*(p2) = L*(1)

S*(T;0)

S*(T;1)

S*(T;p1)

S*(T;p2

)

S*(T;p)

T

S*(0;0)

M/M/1, M/D/1 M/M/∞, M/D/∞

(a) (b)
S*(T;p2)

Figure 5. Qualitative behavior of L*(p) and S*(T; p) vs. T, for p = 0, p1,
p2, 1, where 0 < p1 < p2 < 1.

8 For the capacitated queues, L* is increasing in e, whereas for the
uncapacitated queues, L* is the same and equal to E[W] for both values of
e. This is because the service rate of the underlying queueing system is
set so that E[W] is the same for all queueing system variations. For all
queues, S*(T) and C*(T) are increasing in e. This can be explained by the
fact that as e increases the system utilization increases.

Effect of uncertainty
In the previous section we looked at the simpler case where there are no
cancellations, and therefore ADI is variable but reliable. In this section,
we investigate the general and more complicated case where ADI is both
variable and unreliable. To do this we let both the rush job probability p
and the cancellation probability q be greater than zero. In this case the
confirmation lead time  is no longer irrelevant. Due to the complexity of
the model and the relatively large number of ADI parameters whose influence
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on the supplier’s performance we want to investigate, we restrict our
attention to the M/M/1 and M/D/∞ queues only.

As before, we optimized L and S(T) for different values of parameters T and
p but also q and , for the M/M/1 and M/D/∞ queues, and for each value of
. Tables 6 and 7 show the resulting values of L*, S*(L*), and C*(L*). The
values in the rows where q = 0 are identical to those in Tables 2 and 5,
respectively. The results in all other rows were found after running a
large number of simulations at different L and S values and choosing the
best combination of values. As in the case of Tables 2-5, in these tables,
we purposely omitted displaying S*(T) and C*(T) for different values of T,
except for T = L*, for space considerations.

Table 6: Optimal replenishment policy decision variables and corresponding
minimum long-run expected average cost for the M/M/1 queueing system

Case 1:  = 1, e = 0.8 Case 2: = 1.15, e = 0.95
p q L* S*(L*) C*(L*) L* S*(L*) C*(L*)

0  - 11.5129 0 9.210 11.5129 0 10.937
0 10 0 9.440 10 0 10.604
5 10 0 9.409 11 0 10.5620.15
8 11 0 9.258 11 0 10.414
0 8 0 9.882 8 0 11.043
5 9 0 9.548 9 0 10.719

0

0.35
8 10 0 9.411 10 0 10.582

0  - 14 0 9.222 13 0 10.428
0 12 0 9.519 13 0 10.846
5 13 0 9.405 13 0 10.8800.15
10 13 0 9.401 13 0 10.658
0 10 0 9.923 10 0 11.217
5 12 0 9.699 13 0 11.141

0.2

0.35
10 13 0 9.523 14 0 11.013

0  - 23 0 9.390 22 0 10.523
0 21 0 9.607 20 0 10.888
5 22 0 9.543 22 0 10.917
10 22 0 9.522 23 0 11.091
15 23 0 9.465 23 0 11.087

0.15

20 24 0 9.359 24 0 11.081
0 19 0 9.986 20 0 11.657
5 20 0 9.912 22 0 11.582
10 22 0 9.810 25 0 11.414
15 24 0 9.698 25 0 11.096

0.5

0.35

20 25 0 9.627 26 0 11.024
0  - 38 0 9.669 36 0 10.800

0 37 0 9.864 34 0 11.585
5 37 0 9.777 35 0 11.494
10 38 0 9.723 37 0 11.279
15 39 0 9.717 37 0 11.263

0.15

20 40 0 9.703 38 0 11.184
0 34 0 10.047 33 0 11.576
5 36 0 10.045 35 0 11.587
10 37 0 10.003 38 0 11.646
15 39 0 9.948 38 0 11.493

0.7

0.35

20 41 0 9.940 39 0 11.403
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Table 7: Optimal replenishment policy decision variables and corresponding
minimum long-run expected average cost for the M/D/∞ queueing system

Case 1:  = 0.2, e = 0.8 Case 2:  = 0.2, e = 0.95
p q L* S*(L*) C*(L*) L* S*(L*) C*(L*)

0  - 5  0 0 5  0 0
0 5 0 0.881 5 0 1.0150.15
3 5 0 0.453 5 0 0.507
0 5 0 2.680 5 0 3.085

0

0.35
3 5 0 1.351 5 0 1.522

0  - 5 2 1.779 5 2 1.955
0 5 2 2.262 5 2 2.416
3 5 2 2.070 5 2 2.2500.15
7 5 2 1.901 5 2 2.186
0 5 1 2.905 5 1 3.172
3 5 2 2.539 5 2 2.709

0.2

0.35
7 5 3 2.223 5 3 2.279

0  - 5 4 2.750 5 4 3.030
0 5 4 3.046 5 4 3.292
3 5 4 2.951 5 4 3.278
7 5 4 2.845 5 4 3.311

0.15

13 5 4 2.845 5 4 3.311
0 5 4 3.521 5 4 3.702
3 5 4 3.247 5 4 3.591
7 5 4 3.107 5 4 3.906

0.5

0.35

13 5 4 3.107 5 4 3.906
0  - 5 5 3.207 5 6 3.510

0 5 5 3.396 5 6 3.724
3 5 5 3.352 5 6 3.655
13 5 5 3.291 5 6 3.552

0.15

20 5 5 3.291 5 6 3.552
0 5 5 3.671 5 6 4.045
3 5 5 3.543 5 6 3.861
13 5 5 3.468 5 6 3.679

0.7

0.35

20 5 5 3.468 5 6 3.679

From the results in Tables 6 and 7 we can make the following observations.

1 For the M/M/1 queue, as q increases, C*(L*) increases and L* decreases.
For the M/D/∞ queue, as q increases, C*(L*) increases but L* remains
unchanged. This can be explained as follows. As q increases, more
reservations are cancelled; therefore, the unreliability of ADI and
consequently the system cost increase. At the same time, on the average,
more replenishment orders triggered by eventually cancelled reservations
are placed. This tends to cause an increase FG inventory and consequently
a decrease S*(T). For the M/M/1 queue, as S*(T) decreases, L* also
decreases, whereas for the M/D/∞ queue, L* is independent of q. The
effect of increasing q is qualitatively similar to that of decreasing p,
shown in Figure 5.

2 For the M/M/1 queue, as  increases, C*(L*) decreases and L* increases.
For the M/D/∞ queue, as  increases, C*(L*) decreases but L* remains
unchanged. This is the opposite of observation 9 and can be explained as
follows. As  increases, customers are forced to confirm or cancel their
reservations earlier; therefore, the unreliability in the amount of ADI
and consequently the system cost decrease. At the same time, on the
average, fewer replenishment orders triggered by eventually cancelled
reservations are placed. This tends to decrease FG inventory and
consequently increase S*(T). In case 1, as S*(T) increases, L* also
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increases, whereas in case 4, L* is independent of . The effect of
increasing  is qualitatively similar to that of increasing p, shown in
Figure 5.

Conclusions

The most interesting observation from the numerical results reported in
this paper can be summarized as follows.

When the supply process is modeled as a capacitated queue, the optimal
planned supply lead time, L*, is increasing in both p and  and decreasing
in q. Moreover, the tradeoff between the optimal order base stock level and
the demand lead time of class-2 customers is exhaustive. Namely, when the
demand lead time T switches from zero to L*, the optimal replenishment
policy switches from a pure make-to-stock policy into a pure make-to-order
policy. When the supply process is modeled as an uncapacitated queue, on
the other hand, L* is independent of p, q, and  and is equal to E[W].
Moreover, the tradeoff between the optimal order base stock level and the
demand-lead time is not exhaustive. This means that when the demand lead
time T switches from zero to L*, the optimal supply policy does not switch
from a pure make-to-stock policy into a pure make-to-order policy, except
for the M/D/ ∞ queue when p = 0.

The main difference between the capacitated and uncapacitated cases is that
in the former cases, the replenishment orders caused by different customer
demands are sequential and are queued in the order of their arrival times,
whereas in the latter cases, they are independent of each other. Thus, if
there are two classes of customers, those who require immediate service and
those who provide ADI, in the uncapacitated cases, the optimal modified
order base stock replenishment policy with a release lead time is a mixture
of the optimal modified policies for the two classes in isolation. This
implies that the order base stock level should be kept for rush customers
and at the same time the placement of replenishment orders should be
delayed for customers who order well in advance, i.e., whose demand lead
time is greater than L*. In the capacitated cases, however, the optimal
modified order base stock replenishment policy with a release lead time
leads to the exhaustive tradeoff between the optimal order base stock level
and the demand lead time. This implies that replenishment orders should be
placed immediately even for those customers who order well in advance,
i.e., whose demand lead time is greater than L* in isolation, because this
leads to the decrease of the order base stock level needed to satisfy rush
customers.
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